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We study existence and unigueness questions concerning non-linear
variational inequalities of the type of (l.la) - (l.1b) in the introduction.
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SIGNIFICANCE AND EXPLANATION

A variety of heat-transfer problems involving a change of phase, such
as melting of ice, fusion of metals, solidification of alloys, involves
basically two facts: a diffusion process (described for example by the heat
equation) and a description of the progressive change of the region where the
process takes place. Such phenomena can be formulated as free-boundary pro-
blems which are often treated mathematically using variational inequalities.
The heat equation describes many heat transfer problems only in the crudest
way.

In this paper we propose to study such processes by using a non-linear,
more refined model of heat-conduction. We develop a mathematical theory for
a convenient class of variational inequalities and apply it to study problems
involving a change of phase (for example a Stefan problem) where the alter-

native model mentioned above is employed.
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A PSEUDO-PARABOLIC VARIATIONAL INEQUALITY AND STEFAN PROBLEM

E. DiBenedetto and R. E. Showalter(l)

1. Introduction.
Let A and B be (possibly multi-valued) maximal monotone operators and let
C be a non-empty closed convex set in the real Hilbert space V. We shall give

existence and uniqueness results for evolution inequalities (formally) of the form

(1.1.a) u(t) € C: (ad?(Au(t)) +Bu(t)-f(t),v-u(t))v 20, veC, 0<t<T,
(1.1.b) (Au(O)-vo,'v-u(O))v >0, wvecC,

where f e L2(0,T:V) and Vo € A(uo) are given. 1In Section 2 we introduce a new
notion of weak solution of (1.1) and verify uniqueness when A is linear self-ad-
joint and B 1is strictly monotone. Existence of a Veak solution is proved in
Section 3 wvhen A 1is a (single-valued) function of the form “identity plus compact
opera;oﬁ‘, B 1is bounded, and A or B is a subgradient.

Variational inequalities of the form (1.1) are of interest on their owm as
extensions of corresponding cvolution equations of Sobolev type (where C=V). Early
work on such inequalities is described in [2]; we mention [6] specifically as a

source of examples of initial-boundary value problems for the pseudo=-parabolic

partial differential equation
)
1.2) at(u-aAu) = kAu

with a> 0, k > 0. Such equations arise as models for diffusion, and they provide
an interesting alternative to the classical diffusion equation wherein a=0. 1In !
Section 4 we give an example of an initiale-boundary-value problem consisting of a
highly nonlinear partial differential eq;ation cf pseudo-parabolic type whose

solutfon is subject tounilateral constraints. Existence and uniqueness results for

weak solutions follow from our abstract results on (1.1).

(I)Department of Mathematics, RLM 8.100, The University of Texas, Austin, TX 78712

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

- YP— ERPPIIDITINGD: 571 P BR T RS 5 KT OWS Y S Py s

ST




A one-phase free-boundary problem of Stefan type for the equation (1.2) is
shown in Section 5 to lead to the variational inequality (1.1). This development
is parallel to that of the classical case a=0 which is described, e.g., in [7].
The existence of a classical solution of a Stefan problem for (1.2) in one spatial

dimension was given in [9] by entirely different methods.

2. The Variational Inequality.

We denote by L2(0,T;V) the Hilbert space of (Bochner) square-integrable
functions on the interval (0,T) with values in the Hilbert space V. Let
HI(O,T;V) denote the absolutely continuous Vavalued functions v whose deriv~

atives %% belong to LZ(O,T;V). Denote the dual of V by V* and recall the

*
natural identification LZ(O,T;V)==L2(0,T;V) ; thus we obtain the (dual) iden-

tification LZ(O,T;V)<-—> Hl(O,T;V)* by restriction. The derivative

ﬁ%: HI(O,T;V)CL—+ Lz(O,T;V) is a bounded linear operator which determines the dual
_ fd}\* _2 1 *
operator L=- at +L°(0,T3V) » H (0,T;V) by the formula

_ T \ 2, 1
(LE,v) = -j'o (E(0),v' (0))ydt ,  £eL°(O,TV) , ve H(O,T3V) .

The restriction of Lf to V-valued test functions is the (distribution) derivative

df

it Moreover, for f € HI(O,T;V) we have

N 1
(LE,v) = (—“f,v) + (£€0),v(0)), = (£(T),v(T)), , v € H (0,T;V) .
at’ )12 6 1.y v v

Thus, we can regard "Lf+f(T)" as formally equivalent to the Cauchy operator

af "
" Tt +£(0)".
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We shall use basic material on maximal monotone operators {1]. Specifically,

recall A CVxV is monotone if [x l]eA for j=1 and 2 imply

. j 9 YJ .
(xl-x2 . yl--yz)V > 0, and strictly monotone if in addition equality holds only if

X) =X, . If ¢: V>RU {+=) 1is proper, convex and lower semicontinuous, its

subgradient defined by
do(x) = (u e V: (u,y-x)v < o(y)-¢(x) for all y e V)

for x € V 1is maximal monotone. More specifically, if C 1s a non-empty, convex

and closed set in V, its indicator function

0 , xe¢C
Ic(x)s

+to , x¢é¢C

is proper, convex and lower semicontinuous, and we have u e alc(x) if and only if

xe C (uy-x) <0 for all yeC.

Thus, the subgradient of the indicator function provides a convenient method of
expressing the variational inequality.
Suppose we are given the pair A,B of maximal monotone operators on the

Hilbert space V, a closed convex subset C of V, fe Lz(O,T;V) and a pair

[uo, vol € A. Then a function u 1is called a strong solution of (1.1) if there

is a pair of functions v,w such that

u,v € HI(O,T;V) : we LZ(O,T;V) ,

(2.1.8) u(t) ¢ C: (d—:;—é-g-+w(t)-f(t), x-u(t))v >0, xeC,

v(t) € A(u(t)) and w(t) € B(u(t)) for a.e. te [0,T), and

(2.1.b) (v(O)-vo, x-u(()'))V 20, xe C.
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Note that since u and v are continuous, C 1is closed in V and A 1is closed
in VxV, it follows that the inclusions u(t) e C and v(t) € A(u(t)) hold for

all te [0,T). Also, (2.1) can be restated as

(2.2.a) d%?— +u(t) + A (u(e)) ? £(t) ,
v(t) € A(u(t)) and w(t) ¢ B(u(t)) for a.e. te (0,T), and
(2.2.b) v(0) + I (u(0)) 3 v

in terms of the indicator function.

We shall use a weak notion of solution in which it is not required that

Ve HI(O,T;V). Set K=(ue HI(O,T;V): u(t) e C, 0 <t <T}. Define a weak solution

of (1°1) to be a function u for which there is a pair of functions v,w satisfying

ueKk; v,w € LZ(O,T;V) .

v(t) € A(u(t)) , w(t) e B(u(t)) , a.e. te [0,T],
and for some ¢ € A(u(T)) we have
(2.3) (Lv+w-f,n-u) + (£,1(D)-u(T))y > (vg, 1(0)-u(®)),, nek.

Note that if u is a strong solution then it is a weak solution with ¢ =v(T).

Moreover we have the following elementary result.

Theorem 1. Let A be continuous, linear, self-adjoint and monotone; let B be

strictly monotone. Then there is at most one weak solution.

Proof: Let Yy and uy be weak solutions and let vl.wl and vz,wz be the

corresponding selections from A(ul), B(ul), etc. By our assumptions on A we

have (after modification on a null set) vj-A(uj) € HI(O,T;V) and gj-A(uj(T))

for 3=1,2. Thus we have

L TP S I AN TR 9 4 T



(LAu1 +w1-f, uz-ul) + (Au1 D, u, (T) -y, (T) )V > (vo » Uy (0) -uy (s)] )V

(LAu2 +v,~f, ul-uz) + (Au, (T),u, (T)~u, (1)), 2 Vg Yy (0)-u, (0))y

For any u e Hl(O,T;V) we have
(LAu,u) = 1/2((Au(0),u(0)),~(Au(T),u(T)),) ,
so adding the two inequalities and applying this identity with u=u, -u, gives

(w,=w, , u,=u,) + 1/2 (Au(T),u(T)),, + 1/2(Au(0),u(0)), < 0 .
1 7271 72 LZ(O,T;V) v v

Strict monotonicityof B shows u, = u, -

Remarks. Without additional assumptions we should not expect uniqueness of the
selections v,w. For example, in the extreme case C={0}, (2.3) is vacuous and
we need only choose v,w e L2 (0,T;V) with v(t) ¢ A(0) and w(t) € B(0) to ob-

tain a weak solution. At the other extreme, C=V, any weak solution gives a

dv
dt

for equations, the curremt uniqueness proofs require, e.g., A or B to be linear

strong solution of the equation +w=f in L2 (0,T;V) with v(0)==v0 . Even

self-adjoint. See [S].

3. Existence of a Weak Solution.

Our objective is to prove the following result on the existence of weak solutions
of (1.1). Note that each of our hypotheses concerns only one of the three sources of

1
% . nonlinearity in the problem; we have not placed.any "compatibility" conditions on the

E, operators A,B or the set C.

Theorem 2. Let C be a non-empty, closed and convex subset of the Hilbert space V.

Let A and B be maximal monotone operators on V and assume the following:
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(1) A 1is a (single-valued) function which maps bounded sets in V into bounded

sets in U, where U 1s a Banach space compactly imbedded in V.

(i1) B maps bounded sets in V into bounded sets in V.

1 (1i1) Either A=0J3¢ or B=0Jy, where ¢: V+R 1is a convex and lower-semicon-

tinuous function.

alidda- | L

Then for each u, € C and f e LZ(O,T;V) there is at least one pair u,w such

-

that

g

(3.1.a) weK, wel2(0,T;¥) , w(t) e Bu(t)), 0<t<T,

(3-1.b)  (L(u+A@)) +w-£,neu) + (u(T) +AW(D), WD =u(D))y > (g +A(4),7(0)-u(0)), , |
for 1 e¢K,

and u(0) = u, -

Remarks. If in addition we had A(u) € HI(O,T;V), then u would be a strong

solution of

(3.2) 'dd—t(u(t)+A(u(t)))+w(t)+BIc(u(t)) > £(t) , a.e. te [0,T) .

This is (2.2.a) with A replaced by A+1.

Since we do have u ¢ HI(O,T;V) and u(0)==u0, it follows that (3.1.b) is

equivalent to

3.3) (3%+LA(u) +w-f,n-u)+(A(u(T)),'1(T)-u(T))v 2 (A(ug),n(0)-u(0)), , nek. ]

Proof: We shall prove Theorem 2 in the following steps. First we approximate (3.2)

(and, hence, (3.1)) by replacing bIC by its Lipschitz=continuous Yoshida approxi-

mation 61;, € > 0; the resulting equation has a solution u, by [5). Then we

R ks it
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establish estimates on [u£], deduce the existence of a weak limit u-slim(ue),

and finally show u 1is a weak solution of (3.1).

(o 2 4 TR L

The approximation. As an approximation of the indicator function IC wve take

L) = @0 xr@lE, e>0, xev.

Its Fréchet derivative is E:Ié(x) =e'1(x-PC(x)), where PC is the orthogonal pro-
Jection onto C, and it is monotone and Lipschitz continuous. Thus B+<‘jIé is
maximal monotone and we obtain from { 5) the existence of a pair u € H1 (0, T;V),

v, € LZ(O,T;V) for each € > 0 satisfying

Tl (0) +A(u_(£2)) +w_(6) +3TE(u_(£)) = £(8)

(3.4)
N ye(t) € B(uc(t)) , a.e. te [0,T],

and uc(O) =ug - This approximation (3.4) is strongly suggested by (3.2).

The estimates. Consider the two cases in (iii).

Case A=0¢: Take the scalar product of (3.4) with u and integrate; this gives

t t
als @l +e" G N +f tsuy + J G e,

t
= 12l + o" agu)) + So (bu), oO<t<T,

* i
vhere ¢ (x) = sup{ (x,y)v-tp(y): y ¢ V] 1is the convex conjugate of ¢ [1, p.4l]). !
Since A 1is bounded, its domain is all of V so ¢(0) < «. Thus, we may take
¢(0) =0 and cp*(x) >0, xe V, with no loss of generality. Since B is monotone

(wc(tz),u‘:(t))v > (BO(O),uc(t)) for t e [0,T], where, e.g., BO(O) € B(0) 1is the

minimal section of B at O. Finally we may assume 0 € € and thus




QIg (u, (£)),u, (£))y 2 Ig(u () 2 0, 0<tgT,

from the definition of the subgradient. These observations and the preceding

estimate give

/2yl ®5 < @/ llv+q> (aup) + (JI£]] 1 +78%¢0) ) e, I, ,
0,T; L (0,T;V)
0<t<T.
This implies that [ju_|| e is bounded, and from (i) and (i1) it follows
€17(0,T;V)
”w " and ”A(u )| are bounded uniformly in € > 0. Next, we
L”(0,T L” (0, T;U)

take the scalar product of (3.4) with u;(t) and integrate; this gives

du

3‘ o 2 +j‘ (dt A s T )y * Tglg )

< IC(“O) + (““t“ 2 +“£“ 2 )““' “

L° (0, T;V) L20,T;v)  ©120,1;v) '

The monotonicity of A implies the second term above is non-negative so we deduce

that "u'” 2 and "I:(ue)” . are bounded uniformly in ¢ > O.
L(OTV) L

Case B=9¢: Take the scalar product of (3.4) with u;(t); this gives

s (o) 5 + (;’—tmuc(c)),ﬁ “e(t))v + (v, (£) +IT(u (£)),ul (£))y = (£(£),ul(D)),

The second term is non~negative because A 1is monotone. The third term is the
derivative of w(ue(t))-+Ié(uc(t)) by the chain rule [1, p. 73]. Thus we integratec
this {dentity and obtain

t
o'l + o(u () +I%Cu_(£)) < o(u) + [£] o' .
j; e'V € C'e 0 LZ(O,T;V)I € Lz(O,T;V)

. . S " -
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We can add to B=0¢ a constant, by adding the same to £(t), so we may add an

affine function to ¢ with no loss of generality and thereby obtain o(x) >0

for all x e V. The preceding estimate gives uniform bounds on “u;” 2 |

{ L°(0,T;V) !
b and ||Ié(ue)” o+ Similar bounds follow immediately on Huell - and by (1) {
L L (0,T;V)
3! and (ii) on HA(ue) I . and ||w€|| - , respectively. -.
E— ‘ L7 (0, T;0) L” (0, V) |
The limit. From the estimates obtained above it follows there is a subnet of [uel :
1
B (which we denote again by {uc]) for which
L : w-lim(us) =u in HI(O,T;V) , and

welin() = v in 12,1V ,

where '"w -1lim'" denotes the weak limit.

Lesma 1. u ¢ K.‘E"{v € HI(O,T;V): v(t) ¢ C, all It e [0,T)), u(0)=u0 and f

w-lim(ue(t:))=u(t) in VvV for every t e [0,T].

kl Proof: Let t > 0. For each x € V we have

t
(u, (£)-u(t), )y = j‘o ((u,-w) ', x)y + (uy=u(0), %)y

convergent to (uo-u(O),x)V . By bounded convergence ;

T T
1lim ‘Yo (U ~u, %), = j‘o (ugmu(0),x)y = 0 |

B e I i maiOakn

so u(0)=u0 and w-lim(uc(t))=u(t). Next define zc(t)=PC(u€(t)), the
orthogonal projection onto C. Then [zel is bounded in LZ(O,T;V) so there

is a subnet [zg] which converges weakly to 2z in LZ(O,T;V). Note that

[ S IFASS Rl bl 2



10.

lluc(t)-zc(t)ll\zl = 2¢ Ig(uc(t)) < (comst.)e ,

so w-lim(u§)=u=z. Since the set (v e LZ(O,T;V): v(t) € C, a.e. t € C} contains
each 2z  and is weakly closed, it also contains u=2. Finally u e K follows since

C 1is closed and u 1is continuous.

Lemma 2. We have the (strong) limits 1lim A(u£)=A(u) in LZ(O,T;V) and

lim A(uc(t))=A(u(t:)) in Vv for every t e (0,T].

Proof: Let t ¢ [0,T)}. Since [A(uc(t))] is in a compact set in V there is a sub-
net {A(ug (t))} which converges (strongly) to v(t) in V. But w-li.m(uE (t)) =u(t)
in V and A 1is maximal monotone so v(t)=A{u(t)). The above applies as well to
any subnet of [A(“e(t))}’ so the entire net converges to A(u(t)). The convergence
in L? (0,T:V) of (A(ue)} to A(u) follows by the bounded convergence theorem.

Lemma 3. we B(u) and lim(wc s uc) 2 = (w,u) 2 .
L“(0,T;V) L°(0,T;V)

Proof: It suffices to show that [1, p. 27]

(3.5) 1im sup(w_, u ) : < (w,u)
€’ €120, 1;v) .20, T;v)

Take the scalar product of (3.4) with uc -u and integrate. From the estimate

€ € _ <€
(alc(uc).ue-u)Lz(o’T;v) 2 I (u) L, (W=I,(u) >0

we obtain

d
(we . “c) > < (wc . “)L‘ + (E?(uc +A(|.|e)),u-u‘:)La + (f,u':-u)l o -

s .
P .

\ "

; - L
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By taking the upper limit we have

d
lim sup(we , us)L2 < (w,u)L2 +1im sup(a--t-(ua+A(u€)),u-u€)L2 .

Thus it suffices to show the last term is non-positive. From the identity

e il

T 2 2 T
5wy = 120, @l -5y 0y

and Lemma 1 there follows ki

o

ﬂT 9 2 T
1im inf Jo (u , u )y > /2 (@ o= lug ) -j‘o (@', u), =0 .

Similarly from Lemma 2 and

T T
j‘o B@)',u, )y = ““JT%“.:(T)'“(T))v'SO A(u),u-u')y

T
it follows that lim [ (A(u)',u -u)=0. 1
0 :

The solution. To show that u is a weak solution, it suffices by Lemma 1 to verify ,

(3.1.b). For any n € K it follows from (3.4) that

(3.6) (ug» 1=u.) +@A@) '), + (g =f,n-u) ,

€1L%¢0,T;V) L©,1;v) °© L°(0,T;V) !

€
= QL.(u ),u =n)
C e ¢ LZ(O,T;V)
From the definition of subgradient it follows that the right side is greater than
Ié(ut) - Ig(n) = I:(ue), hence, non-negative. Consider the first term on the left

side. We have from w=1lim u, (T) =u(T) that
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@' 5= @W2) (u@ -l € 1im tnf @/2) (lu @ [Z-[ugl?
L

=14im inf(u": , uc) 2
L
so there follows

{Lv,n-u) + (u(T), n(T)=u(T))y - (uo , T‘,(O)-uo)v= (u',n-u)L2 > 1lim sup(u; . r]-u“:)L:Z .

Concerning the second term, we obtain from Lemma 2

(L(Au),n-u) + (A(T)),n(T)=u(D))y = (Alsy),1(0)=up)y
= Un{{L(Au ), n=u_) + (A(u (1)), (T)=u (T))y=(A(uy), n(0)=uy)y)

- lim(A(ue)',n-ue)Lz(o ) .

Finally, Lemma 3 identifies the limit of the third term, so by taking the "lim sup"

in (3.6) we obtain (3.1.b).

&. A Pseudo-Parabolic Inequality.

When our results from above are used to describe initial-boundary~value problems
for partial differenticl equations or inequali.ties, it is usually more convenient to
express them in terms of the equivalent notion of a maximal monotone operator @&
from the Hilbert V to its dual V*. Thus, letting R: V »> v* be the Riesz iso-

morphism given by the scalar product,
Rx(y) = (xay)v ’ xyeV,

* -
we say @ C VxV is monotone if the composite operator A=R 1 ¢®@ 1is monotone in

*
VxV and maximal monotone if, in addition, Rg(R+@) =V . We can easily state

Theorem 2, for example, in this context. Thus, we are given a set C closed and

*
convex in V; @ and ® are maximal monotonc operators from V to V  satisfyiug

PR e



13. ,

hypotheses corresponding to (i), (1i) and (iii). Then for each Uy € C and

*
fe L2(0,T;V ) there is a pair of functions u,w satisfying

(4.1.a) uek={ve HI(O,T;V): v(it) e C for 0<t<T), :

7 (4.1.b) weL200,T;v") , w(t) € B(u(t)) for a.e. te [0,T],
i (%.1.¢) @(u) € 120, T;v*) and u(0) = Uy » i
t (4.1.4) (L@ +@) (u) +w=f,n=u) + @R +8&)u(T) (q(T)=u(T))
’ > (£R+a)uo(n(0)-u(0)) , for nek. E
| )
1

2 %* 1 %* g

In this setting the linear operator L: L"(0,T;V ) > H (0,T;V) is given by E |

T
(Lgu) = -f g®)@' €Nt , geL2O,TVY) , ue H(OTY) .
0

Since u e Hl (0,T;V), the inequality (4.1.d) is equivalent to

IR R

£ R HLEW) +-f, 1m0} + @ (D) (1D -u(D) > luy) (1(0)-u(0)) ,

for neK .

We shall describe an example of a partial differential equation of pseudo-

parabolic type which is to be resolved subject to unilateral boundary constraints.
(A similar equation with constraint over the entire region will be given in the
next section.) Let G be a bounded open set in R" vwhich lies on one side of
its boundary JG; assume OG consists of two disjoint parts Po and T, and

=Y
let n(s) = (nl(s),...,nn(s)) be the unit outward normal at each point s € OG.

Hl (G) 1is the Sobolev space of those v ¢ L2 (G) for which all derivatives
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abTv, Djv, 1<j<n, belong to Lz(G); we set Dov=v. Let V={v e HI(G):
h|

=0}; by vlr we mean the trace of v on 1‘o (see [8,10]). For veV
0

we denote by y(v) ¢ Lz(l") the trace of v on I'. Let I, € LN(G) and

V'PO

r, € L") be non-negative and define

n .
“.2) Ru(v) = (u,v) =J 2 D,uD,v+r. uv +jr YY), u,ve V.
' 173V T %o 1
G\j3=1 r
It follows by a compactness argument that (4.2) is equivalent to the usual Hl )
* scalar-product if any one of Ty or {x: ro(x) >0} or (s: rl(s) > 0} has
strictly positive measure, and we assume this hereafter.

The operator @ 1is given by a pair of continuous (maximal) monotone functions

%g a..lz R >R which are linearly bounded: ,

|a.j(z)l_<_Q(1+|z|), zeR, j=0,-1

for some constant Q > 0. We define

“.3) Qu)(v) = ‘chx,o(u)v + S a_q yw)yv, uyvev.
r

This operator {s a subgradient (in fact, a Gateux derivative) and is bounded from

*
V to Ust(G)xLz(l"). Since the imbeddings V <> U and U=U ;)V* are

REGEFENAINS t02n, s trm,

compact, the hypothesis (i) is fulfilled. ;

The operator 3 will be specified by a family of maximal monotone operators

:é ak; R >R which are linearly bounded:

|w|5Q(1+|z.|) for wepy(x), zeR, -lgkgn i

s
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for some Q > 0. Each Bk=a¢k for a corresponding convex continuous @ R > R.

We then define B3 =0¢ where

n
o) = j’c Z, O +jr 0,0V, veV.

Thus 8 1s given (formally) by

PR

n
4.4) B(u) = kZ D:Bk(Dku) + Y*B_l(yu) , ueVv,
=0

To be precisc, we have F ¢ B8(u) if and only 1f there exist fk € ﬁk(Dku) in

LZ(G). 0<k , and f-l € B_I(Yu) in Lz(l") for which

i ot o AN i et i

n
F(v) = 'YG k§0 £V + 51* £,0v), veV.

By restricting each of the functionals R(u), @(u) and B(u) to test functions

c;(c) we obtain the corresponding distributions over G

(4.5.a) Qlo(u) = «Au + ToY

(4.5.b) @y (u) = on(u) ,

n
(4.5.c) g (u) = 3§1Djaj(nju) +Bo) , uwueVv, ,5

vhere the multi-valued 530 is interpreted as before. The respective differences

are given (by Green's theorem for the first and last cases) for sufficiently regular

u by




(4.6.a) Ru(v) -scmo(u)v = Sp (%:- + rlvu) Y ,

(4.6.5)  @(u)(v) -Sc v = § a o,
r

(4.6.c) B(u)(v) -‘YG 530(u)v -‘Y [jglﬁ u)nj+ﬁ (yu)] YW, vev,

Thus we have realized the operators R, @ and 3 as the sum of a distribution

over G (4.5) and a boundary part over I’ (4.6). See [5] for details.

The remaining data is given as follows. Let C={ve V: y(v) >0 a.e. on TI)

and let u, € C be specified. Suppose Fo € L2(Gx [0,T]) and g € L2(I‘x {0,T))
are given and define f ¢ Lz(O,'r;V*) by

f(t)(v) = ‘YG Fo(-,t)v +II‘ go(-,t)yv , VveV.

With the preceding data as given, the solution u,w of (4.1) is a generalized

solution of the pseudo-parabolic problem

(
a%(ﬂ(ou + ao(u)) +Bo(u) - Fo in 6x (0,T)

u(x,0) = uo(x) ’ xe G,

u=0 on r‘ox[o.'r]

u>0, A(u) >0,

A(u)(u) =0 on I'x([0,T]

vhere A 1s the boundary operator obtained from (4.6) as

(4.8) A(u) = —(g- + r;¥(u) +a 1(\m)) + 2 Bj(Dju)n +B 1(\m)
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The other operators in (4.7) are given by (4.5). Note specifically that the multi-

valued operators are to be interpreted precisely as was done above following (4.4).

5. A Stefan Problem.

We consider a problem of heat diffusion involving a solid-liquid phase change
at a prescribed temperature. One application we have in mind is the melting of ice
(initially at temperature zero) suspended in a reservoir or porous medium. The
novelty in this treatment is that we assume the heat diffusion is governed by the

pair of equations

%%skmp, 0= ¢-aip .

Chen and Gurtin [3] introduced such a model for heat conduction in non-simple
materia'ls where the energy, entropy, heat flux and thermodynamic temperature O(x,t)
depend on the conductive temperature ¢(x,t) and its first two spatial gradients.
Here the heat flux is determined by the conductive temperature and the phase is de-
termined by the thermodynamic temperature. Thus © > 0 in the region occupied by

water and ©=0 corresponds to the frozen region.

We describe the geometry of the problem. Let the bounded domain G 1in R"
be the medium in which the ice/water is suspended and let its boundary oG consist
of two disjoint pieces, 1"0 and 1"1 . Set f1=6x(0,T), where T > 0, and note
that its lateral boundary is BO J B1 , Where Bj=1"jx {0,T) for 3=0,1. The
water-region 91- ((x,t) € Q: 0(x,t) > 0} 4is separated from the ice-region
fg= {(x,t) € 0: 8(x,t) =0) by an interface S which is the phase boundary. The

» £ -
unit outvard normal on M, is denoted by N= (N ,N), N e R". If V(t) fis

S Sy e g g

the velocity in Rn of the interface at time t, then it follows by the chain




;
,
5
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rule that V(t)-§x+Nt-O on S. Set n= ﬁxlllﬁx”, the unit outward normal in R"
of the lateral boundary of - Of course n-t?x on Bl' and ﬁx-o vhere t=0
or t=T,

The problem is formulated as follows. We are given the conductivity k > 0,
temperature discrepancy a > 0, and latent heat b > 0, of the material and a
constant h > 0 representing conductivity across the lateral boundary B1 . The
initial thermodynamic temperature Oo(x), X € G, and applied conductive termperature
g{x,t), (x,t) ¢ Bl ,» are given with 00=0 on 1"0, Oo >0 on l"l , and g> 0.
The local form of the problem is to find a pair of non-negative functions 8,9 on

1 for which we have

(5.1.a) ?:"’ Kap, O=¢-ate in 0
(5.1.b) k %‘ﬁ + bV(t)'n = 0 on S
(5.1.¢) K g% + h(p-g) = 0 on T
(5.1.4) =0 on 1"0
(5.1.e) 0(,0) = 0 on G .

0
Note that if 0,9 4is a solution of (5.1) and 8, 2 0, then

(5.2) (a/k) g—: +0=0¢ in @
so it follows that ¢=0 on Go US. Since g.> 0, the maximum principle for the
elliptic equation in (5.1.a) on the region G(t)=(x e G: (x,t) e 01] shows that

>0 in 01 and %:-<0 on S. Thus Nt<° on S and G(t) 1is increasing

with ¢,

o
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We shall show that the problem (5.1) leads to a variational inequality of the
form (1.1). Define V={(v e Hl (G): le‘ =0} as before. Regarding regularity of
a solution, we assume 00 eV, 6 [0,T]o-> V 1is absolutely continuous, ¢ € Ll(O,T;V),
and (c.f. (5.2)) ‘

(5.3) %"—3—59-+ 0(t) = o(t) , a.e. te [0,T]

*
Define the continuous lirear Rt V>V by

Ru(v) = S K (Fu- Tv)dx +S h(uw)ds , uvelV.
G r
1

For a test function v € C;((O,T),V) we obtain

T . - -
S Re(t) (v(t))dt = S kK Veo-Vv dxdt +j‘ hev dsdt
0 8 B, ‘ |
- - ‘
= S (-kAp)v dxdt +S k Vo-Nvdsde +5‘ hov dsdt
0 an B
1 1 1
o0

= -Q Se v +IBlhgv +j‘s bNtv

from (5.1). Furthermore we have

in the sense of V*-valued distributions, where H(s)=1 for s >0 and H(s)=0

for 8 <0 {is the Heaviside function. We can summarize the above calculations as

I A et A L I D TN
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(5.4) L (e+bu(e) + %0 = (@), 1n L'(O,13V")
1

where we define
o), )W) = [ hgle,t)v(s)ds, veV, tel0T] .
1 I"1
Combining (5.3) and (5.4) we find that the absolutely continuous function

0: [0,T] + V satisfies

(5.5.a) L (0+ (a/OR(@) +BH(®)) +R(®) = (), in i, ;v%)
1

(5.5.b) 8(0) = Go , and

(5.5.¢) o(x,t) >0, a.e. x€ G, te [0,T] .

If we integrate (5.5.a) and follow the suggestion in [7] to set

t

u(t) = 0(s)ds
5,
ot ]
£(t) = (1+(a/k)R+bH)G, ~b +j‘ (hg), (sxds ,
0 VR

\ E

there follows

3"; (I+ (a/k)R)u + Ru - £(t) = b(1-H(O)) .

Finally we note that H(u) =H(8) since G(t) 1is increasing in t, hence,
u(l-H(@))=0 1in 0. !
The preceding computations show that u ¢ H1 (0,T;:V) and it satisfies

u(0)=0,
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(5.6.a) u(t) >0 in V
(5.6.b) L @+ ®anu(®) + (c/a)a() 2 £) V', and
(5.6.¢c) (Edg(ﬂt-f k/a)Du(t) + (k/a)gtu(t)-f(t)) (ut))=0, 0<t<T.

Setting C={ve V: v >0 a.e. in G} we see that u 1is a strong solution of
.1) with a@=(k/a)I, 8= (k/a)R, and u0=0- Theorem 1 asserts the uniqueness
of a solution of (5.1) under conditions considerably weaker than those leading to
(5.6). Theorem 2 establishes the existence of a weak solution with certain

additional regularity properties. 1In particular @Qu e HI(O,T;V*) since @ is

continuous and linear, so (4.1.d) is equivalent to

({'{(ﬁu +Qu) +w-f,q-u) > 0, for neK.
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